Optimal control of partial differential equations with affine control constraints
نویسندگان
چکیده
Numerical solution of PDE optimal control problems involving affine pointwise control constraints is investigated. Optimality conditions are derived and a semi-smooth Newton method is presented. Global and local superlinear convergence of the method are obtained for linear problems. Differently from box constraints, in the case of general affine constraints a proper weighting of the control costs is essential for superlinear convergence of semi-smooth Newton methods. This is also demonstrated numerically by controlling the two-dimensional Stokes equations with different kinds of affine constraints.
منابع مشابه
Numerical method for solving optimal control problem of the linear differential systems with inequality constraints
In this paper, an efficient method for solving optimal control problems of the linear differential systems with inequality constraint is proposed. By using new adjustment of hat basis functions and their operational matrices of integration, optimal control problem is reduced to an optimization problem. Also, the error analysis of the proposed method is nvestigated and it is proved that the orde...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملHybrid model predictive control of a nonlinear three-tank system based on the proposed compact form of piecewise affine model
In this paper, a predictive control based on the proposed hybrid model is designed to control the fluid height in a three-tank system with nonlinear dynamics whose operating mode depends on the instantaneous amount of system states. The use of nonlinear hybrid model in predictive control leads to a problem of mixed integer nonlinear programming (MINLP) which is very complex and time consuming t...
متن کاملTHE STABILITY IN W s,p(Γ) SPACES OF L2-PROJECTIONS ON SOME CONVEX SETS
Abstract. For a polygonal open bounded subset of R, of boundary Γ, we study stability estimates for the projection operator from L(Γ) on a convex set Kh of continuous piecewise affine functions satisfying bound constraints. We establish stability estimates in L(Γ) and in W (Γ) for 1 ≤ p ≤ ∞ and 0 < s ≤ 1. This kind of result plays a crucial role in error estimates for the numerical approximatio...
متن کاملOptimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces
Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010